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Water entry of two-dimensional bodies
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A numerical method for studying water entry of a two-dimensional body of arbitrary
cross-section is presented. It is a nonlinear boundary element method with a jet flow
approximation. The method has been verified by comparisons with new similarity
solution results for wedges with deadrise angles varying from 4° to 81°. A simple
asymptotic solution for small deadrise angles a based on Wagner (1932) agrees with
the similarity solution for small a.

1. Introduction

Impulse, or slamming, loads with high pressure occur during impact between a
blunt body and the water. The study presented in this paper has most relevance to
slamming loads on ship hulls, but the findings are also important for studying
slamming on the underside of the deck between the hulls of multihull vessels.

Slamming has been extensively studied by Wagner (1932), Garabedian (1953), and
Mackie (1969). Armand & Cointe (1986), Cointe (1991) and Howison, Ockendon &
Wilson (1991) have further developed and extended Wagner’s theory by using
matched asymptotic expansions for impacting bodies with small deadrise angles.
Dobrovol’skaya (1969) presented similarity solutions for wedges that are forced with
a constant velocity through the free surface. The solution is applicable for any
deadrise angle a, but the solution is not available in explicit form and numecrical
results werc only presented for a = 30°. Fraenkel (1991, and personal communi-
cation) has proved existence and uniqueness for the similarity solution of
Dobrovol’skaya for all a. Finally Korokbin & Pukhnochov (1988) have given an
excellent review on slamming.

The paper presents a numerical method for studying water entry of a two-
dimensional body of arbitrary cross-section. The water is assumed incompressible
and the flow irrotational. This means that the impact velocity is not so high that
compregsibility effects in the water matter. In practice this is not a severe limitation.
It is assumed that no air pocket is created during impact. This means that o has to
be larger than 2-3°. The exact nonlinear free-surface conditions without gravity are
satisfied. lmportant features of the solution method are how the jet flow occurring
at the intersection between the free surface and the body is handled, and how
conservation of fluid mass is satisfied in areas of high curvature of the free surface.
The method checks that conservation of mass, momentum and energy are satisfied.

Greenhow (1987) has studied a similar problem by using Vinje & Brevig’s (1980)
nonlincar numerical method. The agreement with the similarity solution was
satisfactory for & > 60°, but poor for a = 45° owing to difficulties in following the jet
flow.

The authors are not aware of numerical similarity solution results for wedges with
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deadrise angles lower than 30°, which is probably due to numerical difficulties in
solving the integral equations. As a part of the verification process of our numerical
method it was decided to derive numerical similarity solution results for wedges with
o from 4° to 81°. The method was based on the analytical formulation by
Dobrovol’skaya (1969), but a different numerical solution technique was used in
order to handle smaller deadrise angles accurately. These calculations require
modern computing facilities. The similarity solution results have been verified by
convergence tests and by checking that the free-surface conditions, the body
boundary condition, the far-field representation, conservation of mass, momentum
and energy are all satisfied.

At small deadrise angles it is possible to use Wagner’s (1932) local jet flow analysis
in combination with matched asymptotic expansions. A simple formula for the
slamming pressure on wedges has been derived and shown to give good agreement
with both the similarity solution and our numerical method for small deadrise angles.

2. Theory

Consider a two-dimensional body that is forced vertically through the initially
calm free surface of an unbounded ocean. No air pocket between body and free
surfaces is assumed to be created during the impact. The origin of the coordinate
system is in the plane of the undisturbed water surface. The z-axis is positive
upwards and is a symmetry line for the cross-section. The y-axis is in the undisturbed
water plane.

The fluid is assumed to be incompressible and the flow irrotational so that there
exists a velocity potential ¢ that satisfies the Laplace equation

¢ P

W + Fr 0 2.1
in the fluid domain. The pressure is set equal to a constant atmospheric pressure on
the free surface. The effect of gravity is neglected compared with the large fluid
accelerations. (However including gravity would cause no difficulties.) The kinematic
free-surface condition is that a fluid particle remains on the free surface. Hence the
motion of the free surface may be found by integrating the fluid velocity. The
dynamic free-surface condition (applied on the exact free surface) can be written as

-6 )

where D/Dt means the substantial derivative and ¢ is the time variable. The body
boundary condition on the wetted body surface is written as
O i
6% = — Vn3 (23)
where n = (n,,ny) is the unit normal vector to the body surface and 9/ is the
derivative along this normal vector. The positive direction of n is into the fluid
domain. V is the body velocity along the negative z-axis.
It is assumed that a jet flow is created at the intersection between the free surface
and the body surface. The pressure is set equal to atmospheric pressure in the upper
part of the jet. We simplify the solution by defining an instantaneous fluid domain
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Ficure 1. Definitions of coordinate system and control surfaces used in the
numerical solution of water entry of a wedge; a = deadrise angle.

€2 that does not contain the whole jet flow. The velocity potential ¢ for the flow inside
the fluid domain is represented by Green’s second identity, i.e.

[695(77, 9 dlogr
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where r = [(y—7)2+ (z— {)*]. The surface § enclosing £ consists of AB, CD, Sy, Sg
and S, where S is a control surface far away from the body. AB is shown in figure
L. The angle between the body surface and AB is 90°, while the angle between AB
and the free surface is close to 90°. The line AB is in an area where the jet starts and
where the pressure can be approximated by atmospheric pressure (see later). CD is
symmetric with AB about the z-axis. Sg is the wetted body surface between points
A and C. 8y, is the free surface outside points B and D and inside S,. S, is chosen
so far away that its contribution in (2.4) is zero. The contribution from the free-
surface integral can be rewritten. For |y| > b(f), where b(t) is a large number
dependent on time ¢, the flow can be represented by a vertical dipole in infinite fluid,
i.e.

2ne(y,2) = j logr—¢(».¢)

S

]dS(% &, (2.4)
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By setting { = 0 the integral from — o0 to —b and from b to oo of (2.4) can be written
as

log[(b+y)*+ 22]% Y [((bty)*+ 22]%
A(t){ b T Z2log b
bty
- lp _are
+y2 zz[sgn(z)zn arctan( > )]}, (2.6)

where the plus sign is valid for the integral from —cc to —b and the minus sign for
the integral from b to co.

The problem is solved as an initial value problem where the velocity potential and
the free-surface elevation are set equal to zero at the initial time. By using the
kinematic and dynamic free-surface conditions, one can follow how the free surface
Sy moves and how the velocity potential changes on the free surface. In the initial
phase of the flow, AB and CD are not used. When AB and CD are introduced, their
motions are found by assuming a one-dimensional flow there and integrating the fluid
velocity. This implies that the deadrise angle cannot be too large. Since the pressure
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is assumed to be atmospheric at AB and CD, and AB and CD follow the fluid motion,
(2.2) can be used to determine the change in ¢ on AB and CD.

At each time instant one solves an integral equation resulting from (2.4) by letting
(y,2) be points on Sy, AB, CD and S inside |y| < b(t). On AB, CD and Sy inside
ly| < b(t), the velocity potential is known and the normal velocity d¢/cn is unknown,
while on S ¢ is unknown and 3¢/0n is known. The unknown A4 (¢) in (2.5) is found by
requiring continuity in the velocity potential at |y| = b(¢). The pressure on the body
follows from Bernoulli’s equation.

In the numerical evaluation of (2.4), the free surface Sy inside |y| = b(t), and body
surface Sy, are divided into a number of straight line segments, on which ¢ and d¢/dn
are set constant. In areas of high curvature on Sg and Sy, as well as close to the jet
area on Sy, a high density of segments ig necessary. One segment is used to represent
AB and CD. Following the assumption of one-dimensional flow, and in view of the
body boundary condition, d¢/0n is constant and ¢ has a linear variation over AB and
CD. In the initial phase of the low AB and CD are not used; instead Sy is assumed
to intersect 8. Owing to confluence of boundary conditions at the intersection, it is
important numerically that fluid variables are not evaluated at the intersection
point.

When 8; becomes nearly parallel to S;, AB and CD are introduced, but we cannot
know exactly a priors at what angle between Sy and Sg this should occur. From the
similarity solution for wedges we know that it should be small if « is not too large.
In results with a < 60° we have introduced AB and CD when the angle between Sy
and Sg is &7 at the intersection. When « = 81°, we have used %7 as a limiting angle.
As long as the limiting angle is small, its choice will not in general influence the flow
and the pressure distribution. An exception is the shape of the pressure distribution
on the body in a small neighbourhood of AB and CD. AB and CD are introduced by
constructing a normal to the body surface from the second end point of the first
segment on S on each side of the body. The first segment on Sy is the one starting
from the intersection between the body and the free surface. The linear variation of
¢ over AB and CD is obtained by using the body boundary condition and
interpolations of the potentials at the midpoints of the first and second segments on
Sy on each side of the body.

After AB and CD are introduced, they follow the fluid motion by using the
velocities normal to AB and CD at their midpoints. The linear variations of ¢ over
AB and CD are found by using (2.2) at the midpoints of AB and CD, and by using
the body boundary conditions at A and C. During the time integration, the relative
angles between the body surface and the second segment on Sg from respectively B
and D are monitored. If this angle is smaller than the limiting angle, new segments
AB and CD introduced by excluding the first segments on S relative to B and D.
The velocity potential on the midpoints of AB and CD are obtained by linear
interpolation.

The integral equation is satisfied at the midpoint of each segment. In the time
integration of the free-surface position, it is important to satisfy conservation of fluid
mass carefully. This means that the rate of change with time of the water volume
above z = 0 should be equal to the rate of change with time of the body displacement
below z = 0.

The time integration of the free surface can be explained using figure 2. P(j, 1) are
endpoints of segments at time instant ¢. Based on the points P(j+2,4), P(j+1,7) and
P(j.7), one obtains a first estimate of P(j+3,4) by fitting a curve of constant
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Fieugs 2. Definitions of points used in the description and motion of the free surface by the
nonlinear boundary element method described in §2.

curvature through the points, and letting P(j+3, ¢) be situated at the midpoint along
the curve between P(j,¢) and P(j+1,4). A second estimate of P(j+1,%) is obtained
similarly but with the points, P(j+1,4), P(j,¢) and P(j—1,¢). The final value of
P(j+1},1)is the average of the first and second estimate of P(j+1, 7). The fluid velocity
at P(j+1,7) is set equal to the numerical value of the velocity at the midpoint of the
straight line segment between P(j,4) and P(j+1,4). It is P(j+1,%) that is followed in
time and not the midpoint of the straight line segment. This avoids large errors in
conservation of fluid mass. Close to AB, CD and [y| = b(¢) this proeedure is
unnecessary since the curvature of the free surface is low. The time stepping of
P(j+4,¢) is done in two steps. First an intermediate new position P(j+1,i+1);,,
at time instant ¢+ 1 is found, based on the velocity V¥ calculated at the midpoint
of the straight line segment between P(j,¢) and P(j+1,7). The change in the
position between P(j+1, 1+ 1), and P(j+1,7) is VA¢, where At is the time difference
between time instants ¢4+ 1 and ¢. The change in the velocity potential is found
similarly. Based on the points P(j—%,i+ 1), P(j—3% ¢+ 1), P(j+3.9+ 1), and
P(j+4,i+1),,, one calculates P(j, i+ 1), by fitting two curves of constant curvature
through the points, and finding P(j,¢+ 1),,, in the same way as described earlier for
P(j+1%,9). Between P(j—1,i+1);,,, and P(j,¢+1);,, straight line segments are
formed. Velocities are found by solving the boundary value problem with the
intermediate positions of the free surface. By interpolation one finds the velocity at
P(j+1, i+ 1), The average velocity V,, at P(j+3,¢+1);,, and P(j+13,7) is used to
find P(j+3,¢+1). The change in position between P(j+1,¢+1) and P(j+1,7) is
V., At. V., is also used in (2.2) to find the change in the velocity potential for the
fluid point j+ 3 on the free surface. The further steps to find the free-surface segments
are similar to those for the intermediate position.

The pressure p on the body is calculated by means of Bernoulli’s equation. The



598 R. Zhao and O. Faltinsen

0¢/0t-term is found by generalizing the concept of substantial derivative. One
introduces

D'¢ _ 0
D= o +U-Vo, 2.7
where D’¢p/D’t is the change in ¢ when one follows a point that moves with velocity
U. U does not need to be the fluid velocity. D'¢/D’t for the midpoint of segment j
at time ¢+ 1At is approximated by A¢/At, where A¢ is the change in the velocity
potential on segment j from ¢ to ¢+ At. The velocity U in (2.7) is the velocity of the
midpoint of segment j, estimated at ¢+ At by the positions of segment j at ¢ and
t+ At. The fluid velocity V¢ at time ¢+ 3A¢ at segment j is found by averaging the
values at ¢ and ¢+ At. This is used in both (2.7) and the quadratic velocity term in
Bernoulli’s equation.

The convergence of the numerical procedure has been tested by changing the
number of body and free-surface segments, the time step and the value of b(f).
Conservation of mags, momentum and energy are also checked. Conservation of mass
has been discussed carlier. In checking conservation of momentum the following
equation can be used:

d
_f (P—Do) Ny ds = a‘t[j ppny dS]' (2.8)
Sy s

Here p, is the atmospheric pressure and p is the mass density of the water. Equation
(2.8) can be shown by using expressions given by Faltinsen (1977) by neglecting the
effect of gravity and generalizing the derivation by including the effect of AB and
CD. As long as AB and CD move with the fluid velocity, (2.8) is correct.

The left-hand side of (2.8) is calculated directly from Bernoulli’s equation. The
right-hand side can also be written as

o f o
Engds+p | U, ds, 2.9
J;p at 3 p s az ( )

where U, is the normal velocity of the surface S (see Newman 1977, p. 133).
The energy E(t) in the fluid domain @ consists only of kinetic energy. It can be
written as

Et)=p0.5 JJ V¢-Vodr = —pO.5J gb%ds. (2.10)
o s on

The fluid domain £ is defined in connection with (2.4). From (2.10) dE(f)/d¢t is
calculated. This is equal to the rate of work dw/d¢ done on the body where

d
-d% = —L (9 —po) ny ds V(£). (2.11)

Figure 3 gives an example on how well conservation of mass, momentum and energy
is satisfied for a wedge with & = 20° that is forced with constant velocity through the
free surface. The figure also shows maximum pressure p,,,, on the body surface and
the z-coordinate z,,, of p,,., as a function of non-dimensional time ¢/7}, where
t = T} corresponds to the instant when AB and CD are first introduced. The figure
also shows the development of ratios between alternative calculations of mass,
energy and force. The mass ratio is the ratio between the time derivative of the fluid
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Frevre 3. Example of how conservation of the mass, momentum, energy and similarity conditions
are satisfied for a wedge that is forced with constant vertical velocity V through the free surface;
a = 20°, ¢ = time. Calculations are based on the nonlinear boundary element method described in
§2. t = T| is the time instant when the jet flow approximation is iutroduced.

mass above the still water level and the time derivative of the fluid mass displaced
by the body below the still water level. The energy ratio is the ratio between the time
derivative of (2.10) and (2.11). The time derivative of the energy is only calculated
between two time instants when AB and CD are moving with the fluid velocity. In
this way one can avoid including the neglected jet flow containing fast moving fluid
with a lot of kinetic energy. The force ratio is the ratio between the right- and left-
hand sides of (2.8). We show graphs only after the segments AB and CD are
imtroduced at { = 7]. If conservation of mass, energy and momentum are satisfied,
the mass, energy and force ratios should be 1. The figure shows that conservation of
energy is most difficult to satisfy. The reason is that the energy expressions involve
second-order derivatives while the mass and force expressions involve first-order
derivatives. Second-order derivations will have less numerical accuracy than first-
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order derivatives. The mean energy ratio is about 1.03 when ¢/7} > 3. Results in
later sections will be based on ¢/7; > 3. The results show that z,,./(Vt) and
(DPrmax — Do)/ (0.5pV%) are nearly constant when ¢/T} > 3. In a similarity flow, these
values should be constant as a function of time. When ¢/7} < 1, conservation of
energy and momentum are not in general satisfactorily satisfied.

The numerical method has also been checked against the similarity solution for
wedges and asymptotic formula for small deadrise angles. The similarity solution and
the asymptotic formula are described in the following sections.

3. Similarity flow for wedges

Dobrovol’skaya (1969) has presented similarity solutions for flow around
symmetric wedges that are forced with a constant vertical velocity V through an
initially calm free surface. In the similarity flow the fluid velocity can be written as

Vo = VF(Vt ;t) (3.1)

where F is a function that Dobrovol’skaya finds by first solving the following integral

equation:
1—1) I*Vexp[ f (f(T_)t) dT] dt

i TR g e

oT

1 1 _ ! flndr
R f rHL—r)TY(2r—1) 7exp{—f = — }dr
where % _ N o T[T{2—(1/r)}—1] _ (3.3)

c? ! —1—- 1y f(T)dT
L“_” "@r=1) yeXp{J:fr[T{Z)—(l/r»—l]}dr

Further v = 0.5—a/n. The unknown function f(¢) is defined for ¢ between 0 and 1.
The parameter ¢ does not mean time in this context: f(f) is bounded and is
proportional to the angle of inclination of the free surface along the y-axis. t =1
corresponds to the intersection point between the free surface and body surface and
¢ = 0 to the point of infinity along the free surface. It can be shown that

f(t) = O(t}) where t-0, (3.4)
fitty =F,—B(1—t)7%: when t—1, (3.5)

where f, = fn is the angle between the body surface and the free surface at their
intersection point. F, and B are unknowns. Dobrovol’skaya has solved (3.2) and (3.3)
by iteration for deadrise angles 30°, 60° and higher. Hughes (1972) followed a
different approach and presented results for o = 45°. The smaller the deadrise angle
is, the higher the accuracy needed in the numerical computations becomes. We
present a different numerical scheme capable of calculating results for deadrise angles
down to 4°.

In the numerical integration of (3.2) and (3.3), the integration domain is divided
into different elements. This is illustrated in figure 4 and will be described for the
integration from ¢ = 0 to 1. The integration from r =} to 1 in (3.3) can be described
in a similar way. We give an example to illustrate how the elements are chosen. The

lc0

(3.2)
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FiGUre 4. Integration domains used in the solution of Dobrovol’skaya’s
integral equation (3.2) for similarity flow of wedges.

reason for the distribution of elements can be understood from a detailed inspection
of the integrands. From 0 to d; an element length of 107! is used. From &, to s,, which
is about 0.1, a linear increase in element length is used. The smallest element is next
to 4, and is 3.63 x 1074, The ratio between successive elements is 1.3 and the total
number of elements is 100. From s, to s,, which is about 0.9, 150 elements are used.
The ratio between successive elements is 1.01. The smallest element is next to s,.
From 1—4, to 1 there is one element of length 1078, From s, to s, = 1—4, there are
250 elements when a > 15°. The distribution of elements is done in two steps. The
smallest one is next to 1 —4,. In the first step its length is 4.49 x 107*% and the ratio
between successive elements is 1.3. In the second step the f-coordinates of the end
points of the segments are chosen as

83— (1 —cos(s3—1;)) (3 8,) /(1 — cos (53— 8,)),

where {, are the endpoints of the segments from the first step. This makes the
elements closest to s, equal to O(1072%). When a < 15°, 500--1800 elements are used
from s, to s,.

In the integrals in (3.2) and (3.3), (3.4) is used for t€[0, 8,]. f(¢) is assumed to have
a linear variation over all other elements. The function

exp[+t l—f@—dr]

o T(t—T)

in (3.2) is evaluated for ¢ equal to the midpoints of each element. In this way the
singularity at 7 = t is taken properly into account. A piecewise linear variation of this
function is assumed in the t-integration. The integrals over each element are
calculated analytically. Equation (3.3) is handled in the same way as (3.2). The
integral equation is satisfied for f-values corresponding to the endpoints of the
elements.

Equation (3.2) is solved by iteration. The convergence of the iteration requires
special care. In the first part of the iteration procedure, an accurate estimate of f(1)
is necessary. The strategy for this can be described by means of figure 5 which shows
two curves with different initial guesses of f(1). It is obvious that the iteration
procedure diverges. The estimates have an oscillatory behaviour as a function of the
number of iterations. When the oscillatory behaviour of the two curves is 180° out
of phase, experience has shown that the correct value of f(1) will be between the two
initial guesses of f(1). A better initial guess of f(1) is obtained by

f01(1)+ (foz(l)_fm(l))[lle(l)_'foav(l)I/Isz(l)"le(l)I]y

where fy,(1) means the value of f(1) after N iterations for sample number ¢ and f,, =
H for (D) +foa(1)). The typical value of N is 10. Following this procedure will finally
give a solution of f(1) that will oscillate with a small nearly constant amplitude for
a particular value of NV and then start to diverge. N may for instance be 15. The
amplitude of oscillations during the first phase may be 1072 relative to the mean
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FieurE 5. Example of the divergent behaviour of f(1) as a function of the iterative solution of
the integral (3.2). Two initial choices of f{1) are shown. N = number of iterations.

Ratio between alternative calculations

o
(deg.) Bo/m &/ Vt Mass Energy Force
81 0.07153 0.3872 1.0016 0.9981 0.9949
70 0.04992 0.7681 1.0018 0.9980 0.9956
60 0.03591 1.0848 1.0018 0.9976 0.9961
50 0.02514 1.3725 1.0021 0.9970 0.9962
45 0.02064 1.5038 1.0025 0.9964 0.9961
40 0.01663 1.6253 1.0029 0.9958 0.9961
30 0.009913 1.8363 1.0047 0.9935 0.9959
25 0.007 143 1.9212 1.0034 0.9970 0.9986
20 0.004783 1.9955 1.0045 0.9954 0.9985
15 0.002836 2.0560 1.0057 0.9928 0.9984
10 0.001337 2.1004 1.0054 0.9923 0.9994
7.5 0.0007775 2.1174 1.0056 0.9903 0.9993
4.0 0.0002329 2.1363 1.0081 0.9749 0.9990

TagLE 1. Similarity solution results for water entry of a wedge with constant velocity V: a =
deadrise angle; {, = z-coordinate of the intersection point between the free surface and the body
surface; B, = angle between the free surface and the body surface at the intersection point.

value. The other values of f({) may have a similar error relative to the mean values.
To improve the solution the iterations are restarted with the values of f(f) after N—3
iterations. The starting value of f(1) is slightly changed, until the accuracy is
satisfactory for all values of f(t). The lower the deadrise angle is, the more difficult
it is for the procedure to converge. The procedure was assumed to converge when the
change in f(t) between successive iterations is 1078 relative to the mean value.
Table 1 shows similarity solution predictions by our numerical method for deadrise
angles between 4° and 81°. The table shows ratios between alternative calculations
of mass, energy and force. The ratio for the mass is the ratio between the fluid mass
above the still water level and the fluid mass displaced by the body below the still
water level. The ratio for the energy is the ratio between the time integral of (2.11)
and (2.10). The ratio for the force is the ratio between the left- and right-hand sides
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of (2.8). The table shows that ratios of mass, energy and force ratios are within
1.01+0.01 except for a = 4°. It is most difficult to satisfy conservation of energy, in
particular for small deadrise angles. The table gives also predictions of the z-
coordinate {y of the intersection point between the free surface and the body surface,
as well as the angle S, between the free surface and the body surface at the
intersection. Dobrovol’skaya (1969) has presented values for 8, and {g for a = 30°,
60°, 81° and higher. The results in table 1 agree with Dobrovol’skaya’s results for
a = 81°, while for o = 30° Dobrovol’'skaya predicts ¢z = 2.0Vt and g, = 0.011%
compared to {z = 1.84V¢ and £, = 0.00997 in table 1. For a = 60° the predictions of
B, agree, while Dobrovol’skaya predicts {z = 1.13V¢. The reason for the disagreement,
at lower deadrise angle is believed to be that the computations require modern
computer facilities with large storage capacity and rapid processing time. Hughes
(1972) predicted g, = 0.02n and {5 = 1.5Vt for a = 45°. This agrees with table 1.
Based on an asymptotic analysis, Cointe (1991) has proposed that 8,1 = 0.542 for
small deadrise angles. The same type of asymptotic analysis will give that {; =
(m—1) Vt. These asymptotic results are in agreement with the results in table 1.

4. Asymptotic formula for small deadrise angles

At small deadrise angles it is possible to use matched asymptotic expansions to
solve the hydrodynamic problem. It is assumed that no air pocket is created during
the impact. The flow is divided into an inner and outer flow domain. In the inner
flow, the details of the jet flow at the intersection between the free surface and the
body are studied. The matching is shown by Armand & Cointe (1986), Cointe (1991)
and Howison ef al. (1991), and will not be repeated here. Our intention is to present
a composite solution for the pressure distribution on the body, which will be used in
the following section to compare with numerical results by the similarity solution
and the boundary element method.

The inner flow regions are located around y = +c¢(¢). Here c(t) is dependent on the
cross-sectional form and can be found from Wagner’s (1932) integral equation. For
a wedge it is found that c(f) = 0.5nVtcotan «. The pressure p,,, on the body in the
outer flow region can be approximated as

Pout—Po = pVe(de/dt) (2 —y?) ¢ for |yl < c(t). (4.1)

In the inner flow region around y = ¢(t) the pressure p,, on the body surface can be
found in Wagner (1932) and written as

Pin—Do = 2p[de/At? [7:(1 + |7) 2, (4.2)
where |7} is related to y by
y—c=(8/m)(—In |7'|—4:]’T|%—[7'| +35). 4.3)

The jet thickness & = nV?2¢[4 dc/dt]™? is obtained by matching the inner and outer
solutions. The parameter |7| varies from 0 to o0 on the body surface, The maximum
value of p,, occurs when |7] = 1, i.e. y = ¢. When |7] >0, y > o0 along the body on the
upper side of the jet. When |7| > 00, y - — o0 along the body. For large values of |7| we
can then write p,, —p, ~ 2p[dc/dt)?|r|™* and y—c ~ — (8/m)|7]. This means

Pin—Do ~ pVe(de/dt) [2e(c— )] (4.4)

for large positive values of c—y.
A composite solution for the pressure distribution on the body surface for positive

20 FLM 246
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y can be obtained by noting that p,,, has the same asymptotic behaviour when y—
c as (4.4). Adding p,,, and p,, and subtracting the common asymptotic term given
by (4.4) results in the following composite solution for 0 < y < ¢(f):

_ de o o de a de\? 12
p—Po—cha;(c y?) chdt[ZC(c ] +2p(dt ITl2(1 +|7]5)72  (4.5)

This solution has no singular behaviour at y = ¢(f). For y > c(f) equation (4.2) is used.
The pressure will be symmetric about y = 0.

Watanabe (1986) has also provided a solution based on matched asymptotic
expansions and local jet flow analysis. However, his analysis of the jet flow, the
matching and the final results are not the same as ours.

5. Comparisons of flow around wedges

Figure 6 shows numerical predictions of pressure distribution and frec-surface
elevation around wedges that are forced with constant vertical velocity V through an
initially calm free surface. The deadrise angle is varied from 4° to 81°. All figures
present results using the numerical method described in §2 and the similarity
solution. The agreement between these two methods is good. The largest differences
occur in the prediction of the free-surface elevation close to the jet flow and in how
the pressure approaches atmospheric pressure in the jet flow. This is believed to be
associated with the jet flow approximation used in the boundary element method, as
discussed in §2. At small deadrise angles the pressure is sharply peaked close to the
jet flow domain. Calculation of the pressure in this area requires high accuracy both
for the similarity solution and the nonlinear boundary element method. A reason is
that the p0¢/0t-term and the velocity squared term in Bernoulli’s equation are of
different sign and have large and nearly equal absolute values in the jet flow area.
This is illustrated in figure 7 for a = 20°. The similarity solution has the best
numerical accuracy. Table 1 shows that the ratios of mass, energy and force are
within 1.0+ 0.01 except for « = 4°. When the nonlinear boundary element method
was used, the mean energy ratios were about 1.03 for a = 40°, 1.02 for « = 30°, 1.03
for a = 25° and 20°, 1.05 for « = 15°, 1.1 for a = 10°, 1.06 for a = 7.5° and 1.08 for
a = 4°. The mean mass and force ratios were within 1.04+0.01 except for a = 4°
where the mass ratio was 0.97.

Figure 6 shows numerical similarity solution results by Dobrovol'skaya (1969) for
o= 30° and 60° and by Hughes (1972) for « = 45°. The agreement with our
numerical similarity solution results is good for a = 45°, while there are some
differences with Dobrovol’skaya’s results, in particular for & = 30°. There must also
be a misprint in Dobrovol’skaya’s pressure results for & = 30°. The results in figure
6 are believed to be correct. A reason for the disagreement may be due to a lack of
accuracy in Dobrovol’skaya’s numerical calculations. Dobrovol’skaya’s result for
a = 81° agree with ours.

Figure 6 also shows pressure results from the asymptotic theory for small deadrise
angles (up to a = 30°). The agreement with the similarity solution is very good for
small a-values. The results for a = 4° shows that Watanabe’s (1986) asymptotic
theory differs from our asymptotic theory. Reasons why the asymptotic theory
deviates for larger deadrise angles are that the quadratic velocity term in Bernoulli’s
equation is neglected in the outer solution, and that the body boundary condition is
not satisfactorily satisfied in the outer flow solution. The velocity potential in the
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outer solution has been obtained by
straight horizontal line connecting ¥
of «. In order to match the outer flow solution to Wagner’s local jet flow solution it
is essential that the outer flow velocity potential is proportional to the square root
of the distance from y = +¢(t) in the
it is not obvious that it is possible to find an outer solution that satisfies the exact
body boundary condition and matches with Wagner’s solution. The reagon why the
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transferring the body boundary condition to a
= t¢(2). This can only be done for small values

vicinity of y = £ ¢(¢). For non-small values of «
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asymptotic theory shows a discontinuity in the derivative at y = c(t) for « = 30° is
that there no longer exists an overlap region between the inner and outer solution,

The pressure results in figure 6 show only a typical slamming behaviour for & up
to ~30°. (By slamming we mean impulse loads with high pressure occurring over a
small surface area.) Important parameters characterizing slamming are the position



Waier entry of two-dimensional bodies 607

20 (e)i)
b (e)ii)

2.5 4

z/Vt 04
—2.51
. ; . —50 ; . . —
-10 —05 0 0.5 1.0 0 25 50 715 100
z/Vt y/Ve
12 1 (HE) 4 1 NG

—21
. : s —4 : : : ;
—-1.0 —-05 0 0.5 1.0 0 2 4 6 8
z/Vt y/ vt
1004 (8)d) 3.0 7 (@)G)
7.54 1.5
(p—p)/0.5pV" 50 £52 z/Vt 0
2.51 —1.51
0 -3.0 T T . —
—-1.0 ) 0 1.5 3.0 4.5 6.0
z/Vt y/ Vvt

F1aurE 6(e—g). For caption see page 609.

and value of the maximum pressure, the time duration and the spatial extent of the
slamming pressures.

According to the asymptotic theory the z-coordinate of maximum pressure is equal
to (0.5m—1) V¢ and the maximum slamming pressure p,,, is given by

— Pmax ~Po

Cp . = 0.5072 = (0.25n% cotan® (6.1)



608 R. Zhao and O. Faltinsen

41O 2 1 (WD)

3..

(p—ps)/0.5pV* 21

1_

0 T ; v‘ T -2 . . - -
-1.0 —05 0 0.5 1.0 0 1 2 3 4
z/Vt y/Vt
4 T [Gl) 1.50" @G
34 0.75 1

(p—p)/0.5pV" 27 z/Vt 04

14 —0.75 1

— —1.50

~1.0 1.0 0 075 050 225 300
y/ve
230 1 (KHD) 2 4 (G
1 4
(p—p.)/0.5pV* 1151 Z/Vt ©
1
0 . —2 : : , :
10 1.0 0 1 2 3 4
Z/ | 41 y/ Vt

FicURE 6 (h—j). For caption see facing page.

for a wedge. The time duration of slamming can be quantified by considering a fixed
point on the body surface and evaluating the time A it takes from when the pressure
18 §(Dmax — Do) until it is §(p .. —»,) again. The spatial extent, AS;, of the slamming
pressure can be found in a similar way, see figure 8. Figure 6 shows that AS, only has
meaning when a <20°. Table 2 shows predictions of €}, _ , zy,,, AS; and the total
vertical force F, on the wedge for deadrise angles up to 40°. F, is based on direct

pressure integration. The values by the nonlinear boundary element method in §2
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vertical velocity V. Calculations based on the similarity solution.
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Ficurr 8. Definitions of parameters characterizing slamming pressure during water entry of a
blunt two-dimensional body. C, = pressure coefficient.

have been obtained by averaging the values in the time interval 3 < t/7] < t,,./7T,,
where £,/ is up to 4 and t = 7] corresponds to the instant when AB and CD are
introduced the first time (see figure 3 and the explanation of the figure). Table 3 gives
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sl
a (deg.) Simil. Asymp. BE Simil. Asymp. BE
4 503.030 504.61 521.4 0.5695 0.5708 0.571
7.5 140.587 142.36 148.3 0.5623 0.5708 0.558
10 77.847 79.36 80.2 0.5556 0.5708 0.555
15 33.271 34.37 32.8 0.5361 0.5708 0.533
20 17.774 18.63 18.2 0.5087 0.5708 0.488
25 10.691 11.35 10.9 0.4709 0.5708 0.443
30 6.927 7.40 6.94 0.4243 0.5708 0.400
40 3.266 3.50 3.26 0.2866 0.5708 0.245
AS, /e Fy/(oV*)
a (deg.) Simil. Asymp. BE Simil. Asymp. BE
4 0.01499 0.01576 0.0156 1503.638 1540.506 1491.8
7.5 0.05129 0.05586 0.0526 399.816 423.735 417.9
10 0.09088 0.1002 0.0941 213.980 231.973 220.8
15 0.2136 0.2314 0.226 85.522 96.879 85.5
20 0.4418 0.4270 0.434 42.485 50.639 43.0
25 — 23.657 29.765 23.7
30 — - 14.139 18.747 13.9
40 — — 5477 8.322 5.31

TaBLE 2. Estimation of slamming parameters by the asymptotic method, the nonlinear boundary
element method (§2) and the similarity solution during water entry of a wedge with constant
vertical velocity V: a = deadrise angle; C, = = pressure coefficient at maximum pressure; z,,, =
z-coordinate of maximum pressure (see figure 8); A, = spatial extent of slamming pressure (see
figure 8); ¢ = 0.5nVicotana; Fy = total vertical hydrodynamic force on the wedge.

o (deg.) gof O, cofz,/Vt oofASj/c o of Fy/pV¥

4 4.0 0.001 0.0003 20.1

7.5 1.2 0.002 0.0003 3.5
10 1.0 0.002 0.0009 1.9
15 0.3 0.002 0.002 0.5
20 0.1 0.003 0.007 0.2
25 0.1 0.004 0.1
30 0.05 0.011 - 0.1
40 0.01 0.004 — 0.02

TaBLE 3. Standard deviations o of slamming parameters obtained from simulation of water entry
of a wedge with constant vertical velocity by means of the nonlinear boundary element method
described in §2. The mean values and explanations are given in table 2.

standard deviations of the time records of the slamming parameters. The results in
tables 2 and 3 show that the nonlinear boundary element method is in good
agreement with the similarity solution. The asymptotic method seems to converge to
the results by the similarity solution when «—0. The maximum pressure is well
predicted by the asymptotic method even for larger deadrise angles presented in
table 2. When « > 45° (see figure 6), the maximum pressure is at the apex of the
wedge. According to the similarity solution €,  will be 2.720, 2.349, 1.810, 1.443
and 1.163 for respectively o = 45°, 50°, 60°, 70° “and 81°.
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The results in table 2 for AS, at small values of « illustrate that measurement of
slamming pressure requires high sampling frequeney and ‘small’ pressure gauges.
There exist in the literature several reported experimental values for the maximum
pressure for wedges and different opinions on how well Wagner’s theory for the
maximum pressure agrees with experimental results. However, experimental error
sources due to the size of the pressure gauge and the change of the body velocity
during a drop test are not always considered. Takemoto (1984) and Yamamoto,
Ohtsubo & Kohno (1984} did consider these factors and showed good agreement with
Wagner’s theory for maximum pressure when the deadrise angle was between ~ 3°
and 15°. The reason for the disagreement for a < ~3°1is due to the air-cushion effect
under the wedge.

6. Conclusions

A numerical method for studying water entry of a two-dimensional body of
arbitrary cross-section is presented. It is based on a nonlinear boundary element
method. Tmportant features are how the jet flows occurring at the intersections
between the free surface and the body are handled, and how conservation of fluid
mass is satisfied in areas of high curvature of the free surface. Conservation of
momentum and energy are also satisfied.

The method has been verified by comparisons with similarity solutions for water
entry of wedges with constant vertical velocity. The similarity solution was
theoretically derived by Dobrovol’skaya (1969). In extending her results, it has been
necessary to develop new numerical solutions for wedges with deadrisec angles a
varying from 4° to 81°.

A simple asymptotic solution for small a based on Wagner (1932) have been
presented and shown to give good predictions of slamming pressures for small
deadrise angles a. For « larger than approximately 30°, the pressure distribution on
the body surface does not show the typical slamming behaviour of high impulse
pressures concentrated over small surface areas.

The authors appreciate the comments by Dr M. Greenhow.
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