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A numerical method for studying water entry of a two-dimensional body of arbitrary 
cross-section is presented. It is a nonlinear boundary element method with a jet flow 
approximation. The method has been vcrificd by comparisons with new similarity 
solution results for wedges with deadrise angles varying from 4" to 81". A simple 
asymptotic solution for small deadrise angles a bascd on Wagner (1932) agrees with 
the similarity solution for small a. 

1. Introduction 
Jmpulse, or slamming, loads with high pressure occur during impact between a 

blunt body and the water. The study presented in this paper has most relevance to 
slamming loads on ship hulls, but the findings are also important for studying 
slamming on the underside of the dcck between the hulls of multihull vessels. 

Slamming has been extensively studied by Wagner (1932), Garabedian (1953), and 
Mackie (1969). Armand & Cointe (1986); Cointe (1991) and Howison, Ockendon & 
Wilson (1991) have further developed and extended Wagner's theory by using 
matched asymptotic expansions for impacting bodies with small deadrise angles. 
Dobrovol'skaya (1969) presented similarity solutions for wedges that are forced with 
a constant velocity through the frec surface. The solution is applicable for any 
deadrise angle CL, but the solution is not available in explicit form and numerical 
results were only presented for CL 3 30". Fraenkel (1991, and personal communi- 
cation) has proved existence and uniqueness for the similarity solution of 
Dobrovol'skaya for all CL. Finally Korokbin & Pukhnochov (1988) have given an 
excellent review on slamming. 

The paper presents a numerical method for studying water entry of a two- 
dimensional body of arbitrary cross-section. The water is assumed incompressible 
and the flow irrotational. This moans that the impact velocity is not so high that 
compressibility effects in the water matter. In  practice this is not a severe limitation. 
It is assumed that no air pocket is created during impact. This means that a has to 
bc larger than 2-3'. The exact nonlinoar free-surface conditions without gravity are 
satisfied. Important features of the solution method are how the jet flow occurring 
a t  the intersection between the frce surface and the body is handled, and how 
conservation of fluid mass is satisfied in areas of high curvature of the free surface. 
The method checks that conservation of mass, momentum and energy are satisfied. 

Greenhow (1987) has studied a similar problem by using Vinjc & Brevig's (1980) 
nonlinear numerical method. The agreement with the similarity solution was 
satisfactory for CL > GOo, but poor for cr. = 45" owing to difficulties in following the jet 
flow. 

'l'ha authors are not aware of numerical similarity solution results for wedges with 



594 R. Zhao and 0. Paltinsen 

deadrise angles lower than 3O0,  which is probably due to numerical difficulties in 
solving the integral equations. As a part of the verification proccss of our numerical 
method it was decided to  derive numerical similarity solution results for wedges with 
CL from 4' to 81". The method was based on the analytical formulation by 
Dobrovol'skaya (1969), but a different numerical solution technique was used in 
order to handle smaller deadrise angles accurately. These calculations require 
modern computing facilities. The similarity solution results have been vcrificd by 
convergence tests and by checking that the free-surface conditions, the body 
boundary condition, the far-field representation, conservation of mass, monieiitum 
and cncrgy arc all satisfied. 

At small deadrise angles it is possible to  use Wagner's (1932) local jet flow analysis 
in combination with matched asymptotic expansions. A simple formula for the 
slamming pressure on wedges has been derived and shown to give good agreement 
with both the similarity solution and our numerical method for small deadrise angles. 

2. Theory 
Consider a two-dimensional body that is forced vertically through the initially 

calm free surface of an unbounded ocean. No air pocket between body and free 
surfaces is assumed to be created during the impact. The origin of the coordinatc 
system is in the plane of the undisturbcd. water surface. The z-axis is positivc 
upwards and is a symmetry line for the cross-section. The y-axis is in the undisturbed 
water plane. 

The fluid is assumed to be incompressible and the flow irrotational so that therc 
exists a velocity potential $ that satisfies the Laplace equation 

in the fluid domain. The pressure is set equal to a constant atmospheric pressure on 
the free surface. The effect of gravity is neglected compared with the large fluid 
accelerations. (However including gravity would cause no difficulties.) The kinematic 
free-surface condition is that a fluid particle remains on the free surface. Hence the 
motion of the free surface may be found by integrating the fluid velocity. The 
dynamic frce-surface condition (applied on the exact free surface) can be writtcn as 

(2 .2 )  

where D/Dt means the substantial derivative and t is the time variable. The body 
boundary condition on the wetted body surface is written as 

= -Vn3 3 
an 

(2.3) 

where n = (n,,n,) is the unit normal vector to the body surface and a / &  is the 
derivative along this normal vector. The positive direction of n is into the fluid 
domain. V is the body velocity along the negative x-axis. 

It is assumed that a jet flow is created at the intersection between the free surface 
and the body surface. The pressure is set equal to  atmospheric pressure in the upper 
part of the jet. We simplify the solution by defining an instantaneous fluid domain 
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FIGURE 1. Definitions of coordinate system and control surfaces used in the 
numerical solution of water entry of a wedge; a = deadrise angle. 

52 that does not contain the whole jet flow. The velocity potential q5 for the flow inside 
the fluid domain is represented by Green's second identity, i.e. 

where r = [(y-y)'+ ( x - 5 ) * ] 1 " .  The surface S enclosing 52 consists of AB, CD, X,, X, 
and S,, where 8, is a control surface far away from the body. AB is shown in figure 
1. The angle between the body surface and AB is go", while the angle between AB 
and the free surface is close to 90". The line AB is in an area where the jct starts and 
where the pressure can be approximated by atmospheric pressure (see later). CD is 
symmetric with AB about the x-axis. S,  is the wetted body surface between points 
A and C. 8, is the free surface outside points B and D and inside S,. 8, is chosen 
so far away that its contribution in (2.4) is zero. The contribution from the free- 
surface integral can be rewritten. For IyI > b ( t ) ,  where b ( t )  is a large number 
dependent on time t ,  the flow can be represented by a vertical dipole in infinite fluid, 
i.e. 

By setting 5 = 0 the integral from - 00 to - b and from b to co of (2.4) can be written 
as 

log[(b+y)2+2]f y [ (b  k y)z + z2]i k -log 
y2 + z2 b b 

+- y2 + z x 2  [sgn ( 2 )  in - arctan (b+")]} .  (2.6) 2 

where the plus sign is valid for the integral from - co to - b and thc minus sign for 
the integral from b to GO. 

The problem is solved as an initial value problem where the velocity potential and 
the free-surface elevation are set equal to zero at  the initial time. By using the 
kinematic and dynamic free-surface conditions, one can follow how the free surface 
S,  moves and how the velocity potcntial changes on the free surface. In  the initial 
phase of the flow, AB and CD are not used. When AB and CD are introduced, their 
motions are found by assuming a one-dimensional flow there and integrating the fluid 
velocity. This implies that the deadrise angle cannot be too large. Since the pressure 
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is assumed to be atmospheric a t  AB and CD, and AR and CD follow the fluid motion, 
(2.2) can be used to determine the change in # on AB and CD. 

At each time instant one solves an integral equation resulting from (2.4) by letting 
(y,z) be points on S,, AB, CD and S,  inside Iy1 < b( t ) .  On AB, CD and X, inside 
IyI < b ( t ) ,  the velocity potential is known and the normal velocity a$/an is unknown, 
while on S, $ is unknown and is known. The unknown A ( t )  in (2.5) is found by 
requiring continuity in the velocity potential a t  Iy1 = b( t ) .  The pressure on the body 
follows from Bernoulli's equation. 

In the numerical evaluation of (2.4), the free surface S ,  inside (yI = b( t ) ,  and body 
surface S,, are divided into a number of straight line segments, on which $ and a#/an 
are set constant. I n  areas of high curvature on S ,  and &, as well as close to the jet 
area on S,, a high density of segments is necessary. One segment is used to represent 
AH and 0. Following the assumption of one-dimensional flow, and in view of the 
body boundary condition, a$/& is constant and $ has a linear variation over AB and 
CD. In the initial phase of the flow AB and CD are not used; instead S,  is assumed 
to intersect X,. Owing to  confluence of boundary conditions a t  the intersection, it is 
important numerically that fluid variables are not evaluated a t  the intersection 
point . 

When 8, becomes nearly parallel to S,, AB and CD are introduced, but we cannot 
know exactly a priori at what angle between S,  and S,  this should occur. From the 
similarity solution for wedges we know that it should be small if a is not too large. 
In  results with a < 60" we have introduced AB and CD when the angle between S,  
and S, is &n a t  the intersection. When a = 81", we have used &IT as a limiting angle. 
As long as the limiting angle is small, its choice will not in general influence the flow 
and the pressure distribution. An exception is the shape of the pressure distribution 
on the body in a small neighbourhood of AB and CD. AB and CD are introduced by 
constructing a normal to the body surface from the second end point of the first 
segment on S, on each side of the body. The first segment on SF is the one starting 
from the intersection between the body and the free surface. The linear variation of 
$ over AB and CI) is obtained by using the body boundary condition and 
interpolations of the potentials a t  the midpoints of the first and second segments on 
8, on each side of the body. 

After AB and CU are introduced, they follow the fluid motion by using the 
velocities normal to AB and CD a t  their midpoints. The linear variations of # over 
AB and CD are found by using (2.2) a t  the midpoints of AB and CD, and by using 
the body boundary conditions a t  A and C. During the time integration, the relative 
angles between the body surface and the second segment on S,  from respectively B 
and D are monitored. If this angle is smaller than the limiting angle, new segments 
AB and CD introduced by excluding the first segments on S,  relative to B and D. 
The velocity potential on the midpoints of AB and CD are obtained by linear 
interpolation. 

The integral equation is satisfied at  the midpoint of each segment. In  the time 
integration of the free-surface position, i t  is important to satisfy conservation of fluid 
mass carefully. This means that the rate of change with time of the water volume 
above z = 0 should be equal to the rate of change with time of the body displacement 
below z = 0. 

The time integration of the free surface can be explained using figure 2. P ( j ,  i )  are 
endpoints of segments at time instant i. Bascd on the points P ( j  + 2, i ) ,  P ( j  + I ,  i )  and 
P ( j : i ) ,  one obtains a first estimate of P( j+i , i )  by fitting a curve of constant 
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' P ( j - 2 + ; , i + 1 ) , " t  

, P ( j + 2 + t , i +  I),,, i+ 1 

p(J, j +  i, 

p( i  + h i 
r \ 

P(j+ 2, ZJ P(.1+3,i) 
FIGURE 2. Definitions of points used in the description and motion of' the free surface by the 

nonlinear boundary element method described in 52. 

curvature through the points, and letting P(j+& i) be situated a t  the midpoint along 
the curve between P ( j ,  i )  and P ( j +  1,  i). A second estimate of P( j+i ,  i) is obtained 
similarly but with the points, P ( j +  1, i), P ( j ,  i) and P ( j -  1, i). The final value of 
P ( j  + i, i) is the average of the first and second estimate of P ( j  + fr, i). The fluid velocity 
a t  P( j + fr, i) is set equal to the numerical value of the velocity a t  the midpoint of the 
straight line segment between P ( j ,  i )  and P ( j +  1, i). It is P ( j +  ij, i )  that is followed in 
time and not the midpoint of the straight line segment. This avoids large errors in 
conservation of fluid mass. Close to AB, CD and Iy( = b(t)  this procedure is 
unnecessary since the curvature of the free surface is low. The time stepping of 
P( j+& i) is done in two steps. First an intermediate new position P(j+;,  i+ l)int 
a t  time instant i+ 1 is found, based on the velocity V calculated at  the midpoint 
of the straight line segment between P(j,i) and P ( j + l , i ) ,  The change in the 
position between P ( j  + $, i + i)bt and P ( j  ++, i) is VAt, where At is the time difference 
between time instants i+ 1 and i. The change in the velocity potential is found 
similarly. Based on the points P(j-i,i+ l)int, P( j - i , i+  l)int, P(j+;, i+ l)i,t and 
P ( j + i ,  i+ l)i,t one calculates P ( j ,  i+ l),,, by fitting two curves of constant curvature 
through the points, and finding P ( j ,  i + l)i,t in the same way as described earlier for 
P(j++, i). Between P ( j -  1, i +  l)i,t and P ( j ,  i+ l)i,t straight line segments are 
formed. Velocities are found by solving the boundary value problem with the 
intermediate positions of the free surface. By interpolation one finds the velocity at 
P(j+& if l)int. The average velocity V,, a t  P(j+a,i+ l)int and P(j+&i) is used to 
find P( j++, i+ l ) .  The change in position between P(j+$,i+l) and P(j++, i )  is 
V,, At. V,, is also used in (2.2) to find the change in the velocity potential for the 
fluid point j + $ on the free surface. The further steps to find the free-surface segments 
are similar to those for the intermediate position. 

The pressure p on the body is calculated by means of Bernoulli's equation. The 
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a$/c?t-term is found by generalizing the concept of 
introduces 

substantial derivat8ive. One 

( 2 . 7 )  

where D’$/D’t is the change in $ when one follows a point that moves with velocity 
U. U does not need to be the fluid velocity. D’+/D’t for the midpoint of segment j 
a t  time t++At is approximated by A$/At, where A 4  is the change in the velocity 
potential on segment .j from t to t + A t .  The velocity U in (2.7) is the velocity of the 
midpoint of segment j ,  estimated a t  t+$At by the positions of’ segment j a t  t and 
t+At .  The fluid velocity V 4  at time t ++At at segment j is found by averaging the 
values a t  t and t+At. This is used in both (2.7) and the quadratic velocity term in 
Bernoulli’s equation. 

The convergencc of the numerical procedure has been tested by changing the 
number of body and free-surface segments, the time step and the value of b( t ) .  
conservation of mass, momentum and energy are also checked. Conservation of mass 
has been discussed earlier. In checking conservation of momentum the following 
equation can be used : 

Here p ,  i s  the atmospheric pressure and p is thc mass density of the water. Equation 
(2.8) can be shown by using expressions given by Faltinsen (1977) by neglecting the 
effect of gravity and generalizing the derivation by including the effect of AB and 
CD. As long as AB and CD move with the fluid velocity, (2.8) is correct. 

The left-hand side of (2.8) is calculated directly from Bernoulli’s equation. The 
right-hand side can also be written as 

where C’, is the normal velocity of the surface S (see Newman 1977, p. 133). 

written as 
The energy E(t)  in the fluid domain Q consists only of kinetic energy. It can be 

E( t )  = p 0 . 5 ~ ~ D V 4 - V q 5 d r  = -p0.5 q5-ds. s, 2 (2.10) 

The fluid domain l2 is defined in connection with (2.4). From (2.10) dE(t)/dt is 
calculated. This is equal to the rate of work dwldt done on the body where 

(2.11) 

Figure 3 gives an example on how well conservation of mass, momentum and energy 
is satisfied for a wedge with a = 20’ that  is forced with constant velocity through the 
free surface. The figure also shows maximum pressure p,,, on the body surface and 
the z-coordinate z,,, of p,,, as a function of non-dimensional time t/T,, where 
t = corresponds to the instant when AB and CD are first introduced. The figure 
also shows the development of ratios between alternative calculations of mass, 
energy and force. The mass ratio is the ratio between the time derivative of the fluid 
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FIGURE 3. Example of how convervat,ion of the mass, mamentum, energy and similarity conditions 
are satisfied for a wedge that  is forced with constant vertical velocity V through the free surface ; 
a = 20", t = time. Calculations arc based on the nonlinear boundary element method described in 
$2. t = 7'' is the time instant when the jet flow approxirriation is introduced. 

mass above the still water level and the time derivative of the fluid mass displaced 
by the body below the still water level. The energy ratio is the ratio between the time 
derivative of (2.10) and (2.11). The time derivative of the energy is only calculated 
between two time instants when AB and CD are moving with the fluid velocity. I n  
this way one can avoid including the neglected jet flow containing fast moving fluid 
with a lot of kinetic energy. The force ratio is the ratio between the right- and left- 
hand sides of (2 .8) .  We show graphs only after the segments AB and CD are 
introduced a t  t = q. If conservation of mass, energy and momentum are satisfied, 
the mass, energy and force ratios should be 1.  The figure shows that conservation of 
energy is most difficult to satisfy. The reason is that the energy expressions involve 
second-order derivatives while the mass and force expressions involve first-order 
derivatives. Second-order derivations will have less numerical accuracy than first- 
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order derivatives. The mean energy ratio is about 1.03 when t/T, > 3. Results in 
later sections will be based on t/T, > 3. The results show that zmaX/(Vt) and 
(p,a,-po)/(0.5pV2) are nearly constant when t/T, > 3. In a similarity flow, these 
values should bc constant as a function of time. When t/T, < 1, conservation of 
energy and momentum are not in general satisfactorily satisfied. 

The numerical method has also been checked against the similarity solution for 
wedges and asymptotic formula for small deadrise angles. The similarity solution and 
the asymptotic formula are described in the following sections. 

3. Similarity flow for wedges 
Dobrovol'skaya (1969) has presented similarity solutions for flow around 

symmetric wedges that are forced with a constant vertical velocity V through an 
initially calm free surface. In  the similarity flow the fluid velocity can be written as 

where F is a function that Dobrovol'skaya finds by first solving the following integral 
equation : 

Further y = 0 . 5 - a / ~ .  The unknown function f ( t )  is defined for t between 0 and 1.  
The parameter t does not mean time in this context: f(t) is bounded and is 
proportional to the angle of inclination of the free surface along the y-axis. t = 1 
corresponds to the intersection point between the free surface and body surface and 
t = 0 to the point of infinity along the free surface. It can be shown that 

f ( t )  = O(tf) where t + O ,  

f(t) = Fo -R( 1 - t);-Pfio when t -+ 1, 
(3.4) 

(3.5) 

where Po = /?n is the angle between the body surface and the free surface at their 
intersection point. Fo and B are unknowns. Dobrovol'skaya has solved (3.2) and (3.3) 
by iteration for deadrise angles 30", 60" and higher. Hughes (1972) followed a 
different approach and presented results for a = 45". The smaller the deadrise angle 
is, the higher the accuracy needed in the numerical computations becomes. We 
present a different numerical scheme capable of calculating results for deadrise angles 
down to 4". 

In the numerical integration of (3.2) and (3.3), the integration domain is divided 
into different elements. This is illustrated in figure 4 and will be described for the 
integration from t = 0 to 1. The integration from r = t to 1 in (3.3) can be described 
in a similar way. We give an example to  illustrate how the elements are chosen. The 
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FIGURE 4. Integration domains used in the solution of Dobrovol'skaya's 
integral equation (3.2) for similarity flow of wedges. 

60 1 

reason for the distribution of elements can be understood from a detailed inspection 
of the integrands. From 0 to 6, an element length of is used. From 6, to  s,, which 
is about 0.1, a linear increase in element length is used. The smallest element is next 
to 6, and is 3.63 x lo-'*. The ratio between successive elements is 1.3 and the total 
number of elements is 100. From s1 to s2, which is about 0.9, 150 elements are used. 
The ratio between successive elements is 1.01. The smallest element is next to sl. 
From 1 - 6, to 1 there is one element of length lo-'*. From s, to  s3 = 1 - 6, there are 
250 elements when a Z 15". The distribution of elements is done in two steps. The 
smallest one is next to 1 -cY2. I n  the first step its length is 4.49 x and the ratio 
between successive elements is 1.3. In  the second step the t-coordinates of the end 
points of the segments are chosen as 

s3-( l  -cos ( S 3 - t i ) ) ( S 3 - S 2 ) / ( 1  -cos (s3-s2)), 

where ti are the endpoints of the segments from the first step. This makes the 
elements closest to s3 equal to O( w5). When a < 15", 500- 1800 elements are used 
from s2 to s 3 .  

I n  the integrals in (3.2) and (3 .3 ) ,  (3.4) is used for t E [0, a,]. f(t)  is assumed to have 
a linear variation over all other elements. The function 

exp[ + t s , ' a d r ]  r(t-r) 

in (3.2) is evaluated for t equal to the midpoints of each element. In this way the 
singularity a t  r = t is taken properly into account. A piecewise linear variation of this 
function is assumed in the t-integration. The integrals over each element are 
calculated analytically. Equation (3.3) is handled in the same way as (3.2). The 
integral equation is satisfied for t-values corresponding to the endpoints of the 
elements. 

Equation (3.2) is solved by iteration. The convergence of the iteration requires 
special care. I n  the first part of the iteration procedure, an accurate estimate off(1) 
is necessary. The strategy for this can be described by means of figure 5 which shows 
two curves with different initial guesses of f(1). It is obvious that the iteration 
procedure diverges. The estimates have an oscillatory behaviour as a function of the 
number of iterations. When the oscillatory behaviour of the two curves is 180' out 
of phase, experience has shown that the correct value off( 1) will be between the two 
initial guesses off( 1). A better initial guess of ,f( 1) is obtained by 

wheref,,(l) means the value off(1) afterNiterations for sample number i and foav = 
+(fol(l)+fo2(l)). The typical value of N is 10. Following this procedure will finally 
give a solution off(1) that will oscillate with a small nearly constant amplitude for 
a particular value of N and then start to diverge. N may for instance be 15. The 
amplitude of oscillations during the first phase may be lop3 relative to the mean 
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FIGURE 5 .  Example of the divergent behaviour of j'( 1) as a function of the iterative solution of 

the integral (3.2). Two initial choices off(1) are shown. N = number of iterations. 

a 
(deg.) 

81 
70 
60 
50 
45 
40 
30 
25 
20 
15 
10 
7.5 
4.0 

P o h  
0.071 53 
0.04992 
0.03591 
0.025 14 
0.02064 
0.01663 
0.009913 
0.007 143 
0.004783 
0.002 836 
0.001 337 
0.000 7775 
0.000 232 9 

6 1  vt 
0.3872 
0.7681 
1.0848 
1.3725 
1.5038 
1.6253 
1 A363 
1.9212 
1.9955 
2.0560 
2.1004 
2.1174 
2.1363 

Ratio between alternative calculations 

Mass Energy Force 

1.0016 0.9981 0.9949 
1.0018 0.9980 0.9956 
1.0018 0.9976 0.9961 
1.0021 0.9970 0.9962 
1.0025 0.9964 0.9961 
1.0029 0.9958 0.9961 
1.0047 0.9935 0.9959 
1.0034 0.9970 0.9986 
1.0045 0.9954 0.9985 
1.0057 0.9928 0.9984 
1.0054 0.9923 0.9994 
1.0056 0.9903 0.9993 
1.0081 0.9749 0.9990 

TABLE 1. Similarity solution results for water entry of a wedge with constant velocity 8: d = 
deadrise angle ; 5, = z-coordinate of the intersection point between the free surface and the body 
surface; Po = angle between the free surface and the body surface at the intersection point. 

value. The other values off(t) may have a similar error relative to the mean values. 
To improve the solution the iterations are restarted with the values off(t) after N - 3  
iterations. The starting value of f(1) is slightly changed, until the accuracy is 
satisfactory for all values off(t). The lower the deadrise angle is, the more difficult 
it is for the procedure to converge. The procedure was assumed to converge when the 
change in f ( t )  betaween successive iterations is 

Table 1 shows similarity solution predictions by our numerical method for deadrise 
angles between 4' and 81'. The table shows ratios between alternative calculations 
of  mass, energy and force. The ratio for the mass is the ratio between the fluid mass 
above the still water level and the fluid mass displaced by the body below the still 
watcr level. The ratio for the energy is the ratio between the time integral of (2.11) 
and (2.10). Thc ratio for the force is the ratio between the left- and right-hand sides 

relative to the mean value. 
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of (2.8). The table shows that ratios of mass, energy and force ratios are within 
1.0+0.01 except for a = 4". It is most difficult to  satisfy conservation of energy, in 
particular for small deadrise angles. The table gives also predictions of the z- 
coordinate cB of the intersection point between the free surface and the body surface, 
as well as the angle Po between the free surface and the body surface a t  the 
intersection. Dobrovol'skaya (1969) has presented values for Po and for E = 30", 
60", 81" and higher. The results in table 1 agree with Dobrovol'skaya's results for 
a = 81", while for a = 30" Dobrovol'skaya predicts CB = 2.0Vt and Po = 0.011n 
compared to cB = 1.84Vt and Po = 0 . 0 0 9 9 ~  in table 1 .  For a = 60" the predictions of 
Po agree, while Dobrovol'skaya predicts cB = 1.13Vt. The reason for the disagreement 
a t  lower deadrise angle is believed to be that the computations require modern 
computer facilities with large storage capacity and rapid processing time. Hughes 
(1972) predicted Po = 0 . 0 2 ~  and Q = 1.5Vt for a = 45". This agrees with table 1. 
Based on an asymptotic analysis, Cointe (1991) has proposed that Pox = 0 . 5 ~ '  for 
small deadrise angles. The same type of asymptotic analysis will give that cB = 

(x- 1 )  Vt. These asymptotic results are in agreement with the results in table 1.  

4. Asymptotic formula for small deadrise angles 
At small deadrise angles it is possible to use matched asymptotic expansions to 

solve the hydrodynamic problem. It is assumed that no air pocket is created during 
the impact. The flow is divided into an inner and outer flow domain. In  the inner 
flow, the details of the jet flow at the intersection between the free surface and the 
body are studied. The matching is shown by Armand & Cointe (1986), Cointe (1991) 
and Howison et al. (1991), and will not be repeated here. Our intention is to present 
a composite solution for the pressure distribution on the body, which will be used in 
the following section to compare with numerical results by the similarity solution 
and the boundary element method. 

The inner flow regions are located around y = k c ( t ) .  Here c ( t )  is dependent on the 
cross-sectional form and can be found from Wagner's (1932) integral equation. For 
a wedge it is found that c ( t )  = 0.5nVtcotana. The pressure pout on the body in the 
outer flow region can be approximated as 

pout -po = pVc(dc/dt) (c2 - y')-: for IyI < c ( t ) .  (4.1) 

I n  the inner flow region around y = c ( t )  the pressure pi, on the body surface can be 
found in Wagner (1932) and written as 

(4.2) 

(4.3) 

pi, -p, = 2p[dc/dt]' 171;(1+ 171:)-', 

y-c  = (6/n) (-In 171 -4171;- 171 + 5 ) .  

where 171 is related to y by 

The jet thickness 6 = n V 2  2c[4 d ~ / d t ] - ~  is obtained by matching the inner and outer 
solutions. The parameter 171 varies from 0 to co on the body surface. The maximum 
value of pin occurs when 171 = 1, i.e. y = c. When 171 + 0, y + 00 along the body on the 
upper side of the jet. When 171 + CO, y + - 00 along the body. For large values of 171 we 
can then write pin -po  - 2p[dc/dt]' 171-a and y-c - - (6 /x )  171. This means 

pi, -po  - pVc(dc/dt) [ ~ c ( c - ~ ) ] - ~  (4.4) 

A composite solution for the pressure distribution on the body surface for positive 
for large positive values of c - y. 
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y can be obtained by noting that pout has the same asymptotic behaviour when y+ 
c as (4.4). Adding pout and pi, and subtracting the common asymptotic term given 
by (4.4) results in the following composite solution for 0 < y < c ( t )  : 

p - p ,  = pvcdt(c2-y')-"-pvc-[2c(c--y)]-:+2p dc dc 17p(l+171:)-2.  (4.5) 
dt 

This solution has no singular behaviour a t  y = c( t ) .  For y > c(t) equation (4.2) is used. 
The pressure will be symmetric about y = 0. 

Watanabe (1986) has also provided a solution based on matched asymptotic 
expansions and local jet flow analysis. However, his analysis of the jet flow, the 
matching and the final results are not the same as ours. 

5. Comparisons of flow around wedges 
Figure 6 shows numerical predictions of pressure distribution and free-surface 

elevation around wedges that are forced with constant vertical velocity V through an 
initially calm free surface. The deadrise angle is varied from 4" to 81". All figures 
present results using the numerical method described in 92 and the similarity 
solution. The agreement between these two methods is good. The largest differences 
occur in the prediction of the free-surface elevation close to the jet flow and in how 
the pressure approaches atmospheric pressure in the jet flow. This is believed to be 
associated with the jet flow approximation used in the boundary element method, as 
discussed in 92. At small deadrise angles the pressure is sharply peaked close to the 
jet flow domain, Calculation of the pressure in this area requires high accuracy both 
for the similarity solution and the nonlinear boundary element method. A reason is 
that the pa$/at-term and the velocity squared term in Bernoulli's equation arc of 
different sign and have large and nearly equal absolute values in the jet flow arca. 
This is illustrated in figure 7 for a = 20". The similarity solution has the best 
numerical accuracy. Table 1 shows that the ratios of mass, energy and force are 
within l.OkO.01 except for a = 4". When the nonlinear boundary element method 
was used, the mean energy ratios were about 1.03 for a = 40", 1.02 for a = 30", 1.03 
for a = 25" and 20", 1.05 for a = 15", 1.1 for a = lo", 1.06 for a = 7.5" and 1.08 for 
a = 4". The mean mass and force ratios were within l . O + O . O l  except for a = 4" 
where the mass ratio was 0.97. 

Figure 6 shows numerical similarity solution results by Dobrovol'skaya (1 969) for 
a = 30" and 60" and by Hughes (1972) for a = 45". The agreement with our 
numerical similarity solution results is good for a = 45", while there are some 
differences with Dobrovol'skaya's results, in particular for CL = 30'. There must also 
be a misprint in Dobrovol'skaya's pressure results for a = 30". The results in figure 
6 are believed to be correct. A reason for the disagreement may be due to a lack of 
accuracy in Dobrovol'skaya's numerical calculations. Dobrovol'skaya's result for 
a = 81" agree with ours. 

Figure 6 also shows pressure results from the asymptotic theory for small deadrise 
angles (up to CL = 30"). The agreement with the similarity solution is very good for 
small a-values. The results for a = 4" shows that Watanabe's (1986) asymptotic 
theory differs from our asymptotic theory. Reasons why the asymptotic theory 
deviates for larger deadrisc angles are that the quadratic velocity term in Bernoulli's 
equation is neglected in the outcr solution, and that the body boundary condition is 
not satisfactorily satisfied in the outer flow solution. The velocity potential in the 
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outer solution has been obtained by transferring the body boundary condition to a 
straight horizontal line connecting y = & c ( t ) .  This can only be done for small values 
of a. I n  order to match the outer flow solution to Wagner's local jet Aow solution it 
is essential that the outer flow velocity potential is proportional to the square root 
of the distance from y = * c ( t )  in the vicinity of y = rt:c(t). For non-small values of a 
it  is not obvious that it is possible to find an outer solution that satisfies the exact 
body boundary condition and matches with Wagner's solution. The reason why the 
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asymptotic theory shows a discontinuity in the derivative a t  y = c( t )  for a = 30" is 
that there no longer exists an overlap region between the inner and outer solution. 

The pressure results in figure 6 show only a typical slamming behaviour for a up 
to -30". (By slamming we mean impulse loads with high pressure occurring over a 
small surface area.) Important parameters characterizing slamming are the position 
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and value of the maximum pressure, the time duration and the spatial extent of the 
slamming pressures. 

According to the asymptotic theory the z-coordinate of maximum pressure is equal 
to  ( 0 . 5 ~  - 1) Vt and the maximum slamming pressure p,,, is given by 
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for il wedge, The time duration of slamming can be quantified by considering a fixed 
point on the body surface and evaluating the time At, it takes from when the pressure 
is +(prnaX--p,,) until it is ~(p,,,--p,) again. The spatial extent, A,SS, of the slamming 
pressure can be found in a similar way, see figure 8. Figure 6 shows that ASs only has 
meaning when a < Z O O .  Table 2 shows predictions of CPmax, z,,,, A& and the total 
vertical force Bi on the wedge for deadrise angles up to 40". F3 is based on direct 
pressure integration. The values by the nonlinear boundary element method in $2 
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FIGURE 8. Definitions of parameters characterizing slamming pressure during water entry of a 
blunt two-dimensional body. C, = pressure coefficient. 

have been obtained by averaging the values in the time interval 3 < t /? ;  < tmax/Tl, 
where t,,,/T, is up to 4 and t = T,  corresponds to the instant when AB and CD are 
introduced the first time (see figure 3 and the explanation of the figure). Table 3 gives 
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a (deg.1 
4 
7.5 

1 0 
15 
20 
25 
30 
40 

a (deg.1 
4 
7.5 
LO 
15 
20 
25 
30 
40 

Simil. 

503.030 
140.587 
77.847 
33.27 1 
17.774 
10.691 
6.927 
3.266 

Simil. 

0.01499 
0.051 29 
0.09088 
0.2136 
0.441 8 

~ 

~ 

~ 

CPmax 

Amymp. 

504.81 
142.36 
79.36 
34.37 
18.63 
11.35 
7.40 
3.50 

A& f c 

Asymy. 

0.01576 
0.05586 
0.1002 
0.231 4 
0.4270 

~ 

- 

- 

BE 

521.4 
148.3 
80.2 
32.8 
18.2 
10.9 
6.94 
3.26 

BE 

0.0156 
0.0526 
0.0941 
0.226 
0.434 
- 

- 

Sirnil. 

0.5695 
0.5623 
0.5556 
0.5361 
0.5087 
0.4709 
0.4243 
0.2886 

Simil. 

1503 638 
399.816 
213.980 
85.522 
42.485 
23.657 
14.139 
5.477 

Z m a J  Vt 

Asymp. BE 
.~ 

0.5708 0.571 
0.5708 0.558 
0.5708 0.555 
0.5708 0.533 
0.5708 0.488 
0.5708 0.443 
0.5708 0.400 
0.5708 0.245 

F,/(PV3t) 

Asymp. BE 

1540.506 1491.8 
423.735 417.9 
231.973 220.8 
96.879 85.5 
50.839 43.0 
29.765 23.7 
18.747 13.9 
8.322 5.31 

TABLE 2. Estimation of slamming parameters by the asymptotic method, the nonlinear boundary 
element method ( $ 2 )  and the similarity solution during water entry of a wedge with constant 
vertical velocity V :  a = deadrise angle; CPmax = pressure coefficient at  maximum pressure; z,,, = 
z-coordinate of maximum pressure (see figure 8) ; AS, = spatial extent of slamming pressure (see 
figure 8) ; c = 0.5rVt cotan a; F3 = total vertical hydrodynamic force on the wedge. 

a (deg.) u of Gp,,, 

4 4.0 
7.5 1.2 

10 I .0 
15 0.3 
20 0.1 
25 0.1 
30 0.05 
40 0.01 

(r of zmJVt 

0.001 
0.002 
0.002 
0.002 
0.003 
0.004 
0.011 
0.004 

u of ASJe 

0.0003 
0.0003 
0.0009 
0.002 
0.007 

~ 

u of P3/pV3t 

20.1 
3.5 
1.9 
0.5 
0.2 
0.1 
0.1 
0.02 

TABLE 3. Standard deviations r.7 of slamming parameters obtained from simulation of water entry 
of a wedge with constant vertical velocity by means of the nonlinear boundary element method 
described in 52. The mean values and explanations are given in table 2. 

standard deviations of the time records of the slamming parameters. The results in 
tables 2 and 3 show that the nonlinear boundary element method is in good 
agreement with the similarity solution. The asymptotic method seems to converge to 
the results by the similarity solution when a --f 0. The maximum pressure is well 
predicted by the asymptotic method even for larger deadrise angles presented in 
table 2. When a 2 45" (see figure 6), the maximum pressure is at the apex of the 
wedge. According to the similarity solution Cp,,, will be 2.720, 2.349, 1.810, 1.443 
and 1.163 for respectively a = 45", 50", 60", 70" and 81". 
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The results in table 2 for ASs at small values of a illustrate that measurement of 
slamming pressure requires high sampling frequency and ' small ' pressure gauges. 
There exist in the literature several reported experimental values for the maximum 
pressure for wedges and different opinions on how well Wagner's theory for the 
maximum pressure agrees with experimental rcsults. How(lvw, cxpcrimcntal error 
sources due to the size of the pressure gauge and the change of the body velocity 
during a drop test are not always considered. Takemoto (1984) and Yamamoto, 
Ohtsubo & Kohno (1984) did consider these factors and showed good agreement with 
Wagner's theory for maximum prcssnrc when the deadrise angle was between -3" 
and 15". The reason for the disagreement for CL < - 3" is due to the air-cushion effect 
undcr the wedge. 

6. Conclusions 
A numerical method for studying water entry of a two-dimensional body of 

arbitrary cross-section is presented. It is based on a nonlinear boundary element 
method. Important features are how the jet flows occurring at  the intersections 
between the free surface and the body are handled, and how conservation of fluid 
mass is satisfied in areas of high curvature of the free surface. Conservation of 
momentum and energy are also satisfied. 

The method has been verified by comparisons with similarity solutions for water 
entry of wedges with constant vertical velocity. The similarity solution was 
theoretically derived by Dobrovol'skaya (1969). In extending her results, it has been 
necessary to develop new numerical solutions for wedges with deadrisc angles a 
varying from 4" to 81'. 

A simple asymptotic solution for small CL b a s d  on Wagner (1932) have been 
presented and shown to give good prcdictions of slamming pressures for small 
deadrise angles a. For a larger than approximately 30". the pressure distribution on 
the body surface does not show the typical slamming behaviour of high impulse 
pressures concentrated over small surface areas. 

The authors appreciate the comments by Dr M. Greenhow. 
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